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With the introduction of spectral-domain optical coherence tomography (SD-OCT), much larger
image datasets are routinely acquired compared to what was possible using the previous gener-
ation of time-domain OCT. Thus, there is a critical need for the development of three-dimen-
sional (3D) segmentation methods for processing these data. We present here a novel 3D
automatic segmentation method for retinal OCT volume data. Brie°y, to segment a boundary
surface, two OCT volume datasets are obtained by using a 3D smoothing ¯lter and a 3D dif-
ferential ¯lter. Their linear combination is then calculated to generate new volume data with an
enhanced boundary surface, where pixel intensity, boundary position information, and intensity
changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete
boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness
constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by
correcting a small number of error points. Our method can extract retinal layer boundary surfaces
sequentially with a decreasing search region of volume data. We performed automatic segmen-
tation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system,
where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496� 512
(each B-Scan comprising 512 A-Scans containing 496 pixels); experimental results show that
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this method can accurately segment seven layer boundary surfaces in normal as well as some
abnormal eyes.

Keywords: Optical coherence tomography; boundary surface enhancement; retinal layer seg-
mentation; OCT volume data.

1. Introduction

The retina is a complex organization composed of a
transparent layer of tissue. Automatic segmentation
algorithms that accurately detect the layer struc-
tures in frequency-domain optical coherence to-
mography (OCT) retinal images are critical for the
e±cient diagnosis of ocular diseases such as glau-
coma, diabetic retinopathy, etc. Many OCT image
segmentation methods have been developed to seg-
ment the retinal layer boundaries with varying
levels of success. Fernandez et al. proposed a method
that used a structure tensor combined with complex
di®usion ¯ltering to segment seven retinal layer
boundaries;1 Mujat et al. implemented a method to
determine the thickness of the retinal nerve ¯ber
layer (RNFL) from OCT images by segmenting two
boundaries using anisotropic noise suppression and
deformable splines;2 Ishikawa et al. recognized reti-
nal layer positions by peaks and valleys in an A-scan
intensity pro¯le by using a mean ¯lter for de-
speckling, which segmented ¯ve layer boundaries;3

Chiu et al. presented a segmentation method that
used graph theory and dynamic programming to
segment seven retinal layers;4 This method was later
extended for segmentation of mouse retinal layers,5

anterior eye images,6 age-related macular degener-
ation (AMD) images7 and diabetic macular edema
images;8 Using a similar method, Yang et al.9,10

utilized a more complex approach to calculate the
weights map of graph-based method, using dual-
scale gradient information and shortest path search
techniques to segment intra-retinal boundaries in
OCT images. Yazdanpanah et al. used an active
contour approach for the segmentation of rodent
retinas;11 A two-step kernel-based optimization was
proposed by Mishra et al.12 However, the methods in
Refs. 11 and 12 was never tested on OCT datasets of
human retinas. Itebeddine et al. proposed a global
segmentation algorithm based on using active con-
tours and Markov random ¯elds to segment eight
retinal layers.13

While the aforementioned methods can be used
to segment OCT volume data slice-by-slice, most of

them require long processing times, and they do not
use the correlation between slices well. Recently,
three-dimensional (3D) OCT retinal image seg-
mentation techniques have been developed.
Zawadzki et al. proposed segmentation methods
using a support vector machine (SVM) and machine
learning,14,15 which could segment one layer once by
manual interaction. Similar to Zawadzki et al.
method, a SVM was used to classify pixels in the
OCT image but in a fully automated way.16 In
Ref. 17, random forest classi¯er was built to seg-
ment eight retinal layers in macular cube images
acquired by OCT. The random forest classi¯er
learns the boundary pixels between layers, produc-
ing an accurate probability map for each boundary,
which is then processed to ¯nalize the boundaries.
Kajić et al. proposed a method that used a large
training dataset obtained from manual segmenta-
tions by human operators as input to develop a
statistical model to segment seven retinal layers.18

Garvin et al. proposed a graph search-based 3D
OCT retinal image segmentation algorithm,19,20

which could segment ¯ve retinal layers, which was
later extended to incorporate hard/soft con-
straints.21 Lee used multi-scale 3D graph search for
segmenting the optic nerve head.22 Raheleh et al.
proposed spectral-geometric methods for graph-
based image segmentation and explored a two-step
di®usion map approach for the segmentation of
OCT images.23 Bogunović et al. proposed graph-
theoretic method for multi-surface multi-¯eld
co-segmentation of intraretinal layers, assuring
consistent segmentation of the ¯elds across the
overlapped areas.24 Shi et al. developed a method to
automatically segment the retinal layers in 3D OCT
data with serous retinal pigment epithelial detach-
ments (PED), which contains fast denoising and B-
scan alignment, multi-resolution graph search-
based surface detection, PED region detection and
surface correction above the PED region.25 Tian
et al. presented a method to segment OCT volume
data in the macular region fast and accurately using
the shortest path-based graph search.26 Fabritius
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et al. presented a fast segmentation method for
segmenting the internal limiting membrane (ILM)
and the retinal pigment epithelium (RPE) that was
based on variations in pixel intensity;27 this method
used A-Scan to segment 3D OCT images, where
only two boundaries are detected. Niu et al. pro-
posed an algorithm to segment 3D OCT images
that utilizes a customized edge °ow to produce the
edge map and a convolution operator to obtain local
gradient map in the axial direction. A valid search
region is then de¯ned to identify layer boundaries,
and a spatial correlation smoothness constraint is
applied to remove anomalous points at the layer
boundaries.28 In Ref. 29, a user-guided segmenta-
tion method was proposed to perform the segmen-
tation of retinal layers and features in OCT images.
Ka¯eh et al. investigated 3D data-driven multi-
scale atomic representation of optical coherence
tomography and the applications of complex
wavelet-based K-SVD in speckle reduction of OCT
datasets and di®usion wavelets in image segmen-
tation.30 In Ref. 31, Chen et al. quantitatively in-
vestigated the optical intensity of each retinal layers
in central retinal artery occlusion (CRAO), and it
found that the inner nuclear layer was identi¯ed as
the best indicator of CRAO. In Ref. 32, Wang et al.
combined the level set method, k-means and MRF
method to segment three intra-retinal layers around
optical nerve head, and they also used hybrid
methods such as the level set method, the hysteresis
thresholding method and the multi-region continu-
ous max-°ow method to segment intra-retinal lay-
ers of 3D Macular Images.33

In this paper, we propose a novel 3D segmenta-
tion method for extracting retinal layer boundaries
from OCT volume data using boundary surface
enhancement and smoothness surface constraints,
which is robust to blood vessel shadow and noise.
To segment a boundary surface, two OCT volume
datasets are obtained by using a 3D smoothing ¯lter
and a 3D di®erential ¯lter. Their weighted sum is
then calculated to generate new volume data with
an enhanced boundary surface, where the pixel in-
tensity, boundary position information, and inten-
sity changes on both sides of the boundary surface
are used simultaneously. Then, preliminary discrete
boundary points are detected from the A-Scans of
the volume data. Finally, surface smoothness con-
straints and a dynamic threshold are applied to
obtain a smoothed boundary surface by correcting a
small number of error points. Our methods can

extract retinal boundary surfaces sequentially
within a decreasing region of volume data. The key
idea is to use pixel position information, gradient
information and intensity information simulta-
neously to enhance the boundary surface to be
detected so that preliminary discrete boundary
points can be detected more correctly and error
points can be eliminated more easily.

This paper is organized as follows: Section 2 gives
a description of our generalized layer segmentation
algorithm, which is fundamental for segmenting all
of the layer boundary surfaces; Section 3 demon-
strates how to segment seven retinal layer boundary
surfaces in detail; experimental results and analysis
are given in Sec. 4; and conclusions are made in
Sec. 5.

2. A Generalized Layer Segmentation

Algorithm

An image acquired from a commercial Spectralis
OCT device (Heidelberg Engineering, Heidelberg,
Germany) is shown in Fig. 1, where the left panel
shows the scanning position in the retinal tissue and
the right panel shows the corresponding SD-OCT
image. Figure 2 illustrates a volume dataset made
up of a sequence of SD-OCT B-scans in the y di-
rection. Every B-scan is composed of A-scans in the
x direction. Each A-scan has a depth coordinate z,
which increases going from top to bottom in the
image.

A retinal OCT image consists of layer structures
(Fig. 3), where the intensity varies in the layers due
to di®erences in the re°ection properties of the
retinal tissue. Moreover, layer boundaries have
various orientations such as the Vitreous–ILM layer
boundary, which exhibits a dark layer above a light
layer.

Fig. 1. SD-OCT image.

3D automatic segmentation method for retinal OCT data
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This section proposes a method for segmenting the
layer structures of the retina. The basic idea of this
method is to use the characteristics of the boundary
of interest to design a 3D operator and apply it to
the original volume data so that the pixel value on
the desired boundary in the new volume data is
likely to be the maximum value in its A-scan. This
approach makes the new volume data a better in-
dicator of the desired boundaries. The algorithm
consists of three steps: denoising, extracting
boundary points and correcting error points. Obvi-
ously, the key problem is to determine how to
identify the correct discrete boundary points. Our
algorithm tries to achieve accurate boundary point
detection by enhancing the boundary of interest.
The core steps in our basic retinal layer

boundary surface segmentation (BRLBSS)
algorithm are below.

Step 1: Denoising
A 3D average ¯lter with size of K1 �K2 �K3 is
applied to the original retina OCT volume data to
obtain a smoothed volume data, S, where K1;K2

andK3 stand for the ¯lter window width in the x, y,
and z directions, respectively, and are all positive
odd numbers.

Step 2: Extract the boundary points

(1) Enhance the boundary with gradient information

A 3D di®erential ¯lter with a size of M1 �M2 �
M3 is applied to the original retina OCT volume
data to obtain a di®erential volume data, D, where
M1;M2 and M3 (M3 6¼ 1) are all positive odd
numbers, similar to K1;K2 and K3.

For an original volume data, V , and one
boundary of interest to be segmented, a pixel vi0;j0;k0
in V , is taken as a center point, and a cuboid with
size M1 �M2 �M3 is constructed using the pixel
and its adjacent pixels, vi;j;k, where i, j, and k are the
x, y, and z coordinates of each pixel. The di®erential
¯lter is sensitive to the boundary orientation.

For the RPE-Choroid, OPL-ONL, IPL-INL and
NFL-GCL boundaries,

fi;j;k ¼
1; k < k0
0; k ¼ k0
�1; k > k0:

8<
: ð1Þ

For the Vitreous–ILM, ONL-IS/OS and INL-OPL
boundaries,

fi;j;k ¼
�1; k < k0
0; k ¼ k0
1; k > k0:

8<
: ð2Þ

Then, the di®erential ¯lter is used to obtain a dif-
ferential volume data, D. Speci¯cally, for every
cuboid in V , the intensity sum of the pixels above/
below the cuboid center is subtracted from that of
the pixels below/above the cuboid center, and the
result is averaged for M1 �M2 � ðM3 � 1Þ to obtain
the intensity of the cuboid center.

(2) Enhance the boundary by position, gradient and
intensity

The depth, gradient and intensity information
for the boundary are used to generate a boundary-
enhanced volume data, I, to further highlight the

Fig. 2. Illustration of a volume dataset.

Fig. 3. Retinal OCT image with layer structures.
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boundary of interest. I is calculated as follows:

Ii;j;k ¼ w1Di;j;k þ w2Si;j;k; ð3Þ
where i, j, and k are the x; y; and z coordinates of
each pixel, and w1;w2 are nonnegative real numbers
that are directly proportional to the depth coordi-
nate, k.

The intensity of the desired boundary in I is
likely to be the maximum value in its A-scan.

(3) Extract the boundary surface points

In each A-scan of I, the point with the highest
pixel intensity or the ¯rst peak (up to down or down
to up, depending on the direction of the boundary of
interest) is taken as the preliminary location of the
desired boundary. Because the highest pixel inten-
sity value is likely to lie on the desired boundary
positions, the results obtained by this approach
generally produce an accurate estimate of the lo-
cation of the boundary.

Step 3: Correct the error points

The depth positions with large errors are cor-
rected using surface smoothness constraints, which
require that the di®erence between the z coordi-
nates of adjacent pixels is small. In step 2, the
boundary surface preliminary positions (z coordi-
nates) make up a depth information matrix, A.
Given a weighted matrix, W1, for a depth element,
p, in A, the absolute value of the di®erence be-
tween p and the weighted average of its adjacent
entries is called the error distance (ED) of the el-
ement (associated with W1). For a threshold T , if
the ED of the element p is larger than the
threshold, then p is considered to be an error point
(associated with the threshold T ). Given a
weighted matrix W2, if an element p in A is an
error point, the weighted average of its adjacent
entries with W2 is taken as its correcting value
(associated with W2). The matrix A can be
smoothed through iteration as follows:

Choose a number of iterations, N . For the ith
iteration, pick a threshold, Ti. For each entry in A,
calculate its ED. If an entry is an error point, then it
is replaced by its corresponding correcting value. If
there exists at least one error point and the iteration
i is not equal to N , then advance to the next iter-
ation until either there are no error points or N is
reached.

The ¯nal depth information in A constitutes the
desired boundary surface.

3. Implementation of the Algorithm
for Segmenting Seven Retinal Layer

Boundary Surfaces

This section details the implementation of the seg-
mentation algorithm in Sec. 2 that automatically
segments seven prominent retinal boundary sur-
faces in SD-OCT volume data. Figure 4 shows a full
schematic of this algorithm, where RPE-Choroid,
Vitreous–ILM, IPL-INL, INL-OPL, OPL-ONL,
ONL-IS/OS and NFL-GCL boundary surfaces are
detected one by one.

For an original OCT volume data V , RPE-
Choroid surface is detected by BRLBSS algorithm
in Sec. 3.1, which can deal with retinal SD-OCT
images with prominent vessels by using dyadic
threshold. Vitreous–ILM surface detection is de-
scribed in Sec. 3.2. Vitreous–ILM boundary surface
segmentation (VI BSS) algorithm is given to pro-
cess low noise retinal OCT image. To deal with
OCT images with signi¯cant noise above the ILM,
Vitreous–ILM preliminary boundary surface seg-
mentation (VI PBSS) algorithm is proposed.
VI BSS is a method without using Gray-scale
morphological corrosion, while VI PBSS uses a ball
structure Gray-scale morphological corrosion.
Gray-scale morphological corrosion can greatly re-
duce noise above ILM, but it will also expand the
vessel shadow if exists. But without using it, the
noise will in°uence ¯nding ILM. Since VI PBSS is
able to deal with OCT images with prominent
vessel shadow, so in order to reduce as much noise
as we can as well as maintain the vessel pixels, we
merge the boundary points obtained from the
VI BSS and VI PBSS algorithms to obtain the ¯nal
segmentation result of Vitreous–ILM boundary
surface. Once the RPE-Choroid and Vitreous–ILM
boundary surfaces are determined, the middle
boundary surfaces between them ONL-IS/OS,
OPL-ONL, INL-OPL, IPL-INL, and NFL-GCL can
be segmented sequentially moving from down to up
in a smaller and smaller search space.

The following subsections discuss each of the
outlined steps.

3.1. RPE-Choroid boundary surface

detection

Based on prior knowledge, the RPE layer is one of
the most hyper-re°ective layers within a retinal SD-
OCT image. Thus, the RPE-Choroid boundary

3D automatic segmentation method for retinal OCT data
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surface detection is processed ¯rst and its imple-
mentation is performed according to BRLBSS al-
gorithm in Sec. 2. Here we discuss how to choose the
parameters in BRLBSS algorithm.

. The ¯lter size

In a 3D smooth ¯lter K1 �K2 �K3 and 3D di®er-
ential ¯lter M1 �M2 �M3;K1;K2;K3;M1;M2 and
M3 (M3 6¼ 1) are all positive odd numbers. In gen-
eral, cube ¯lter is used with 3 � Kj;Mj � 11
ði; j ¼ 1; 2; 3Þ. These parameters can be adjusted
according to dataset processed. A cube ¯lter with a
larger size window could much better smooth the
data but would spend more computing time. For
SD-OCT images with prominent vessels, since RPE-
Choroid boundary in every B-scan is relatively °at,
choosing ¯lters with relatively larger windows can
smooth the original data more so as to reduce the
in°uence of vessel containing regions. Our experi-
ments show that it is a good choice to choose Kj ¼
Mj ¼ 7ðj ¼ 1; 2; 3Þ in general, but for OCT images
with obvious shadows caused by vessels, it is a
better choice to take Kj ¼ Mj ¼ 11.

. The weight parameters

In formula (3), the weight parameters w1;w2 are
nonnegative real numbers that are directly propor-
tional to the depth coordinate, k. As an example, we
can take w1 ¼ w2 ¼ k.

. Weighted matrices

In Step 3 in BRLBSS algorithm, two weighted
matrices W1 and W2 are not unique. As an example,
we take them as follows.

W1 ¼ 1

138

0 1 1 1 1 1 0
1 2 2 2 2 2 1
2 4 4 4 4 4 2
4 8 16 �138 16 8 4
2 4 4 4 4 4 2
1 2 2 2 2 2 1
0 1 1 1 1 1 0

2
666666664

3
777777775
;

W2 ¼ 1

138

0 1 1 1 1 1 0
1 2 2 2 2 2 1
2 4 4 4 4 4 2
4 8 16 0 16 8 4
2 4 4 4 4 4 2
1 2 2 2 2 2 1
0 1 1 1 1 1 0

2
666666664

3
777777775
:

. Iterations and thresholds

For smoothing, iteration times and thresholds
should be determined reasonably. The more itera-
tions, the more computing time. In order to deal
with OCT images with prominent vessels, dynamic
thresholds are proposed and used here. Dynamic
threshold decreases as iterations increase. These
parameters can be adjusted on di®erent datasets.

Original re�nal OCT 
volume data V 

RPE-Choroid Detec�on

Fla�en the volume 
data V, alignment to 

RPE-Choroid, set as V'

Find Vitreous-ILM 
boundary of V'

ONL-IS/OS detec�on 
between Vitreous-ILM  

and RPE-Choroid 

OPL-ONL detec�on 
between Vitreous-ILM  

and ONL-IS/OS

INL-OPL detec�on 
between Vitreous-ILM  

and OPL-ONL

IPL-INL detec�on 
between Vitreous-ILM  

and INL-OPL

NFL-GCL detec�on 
between Vitreous-ILM  

and IPL-INL

Do inverse transla�on 
on the segmented 
layers according to 

RPE-Choroid, get the 
boundaries  based on 

V 

Output the results

Fig. 4. Seven retinal layer boundary surface segmentation algorithm schematic for SD-OCT volume data.
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Here some empirical values are provided according
to the test datasets. We choose the number of
iterations N ¼ 25. For the ¯rst 20 iterations, a dy-
namic threshold is used according to Ti ¼ count�
i=2000, where count is the element number in
matrix A, i is the iteration number and 2000 is an
empirical value. In the last 5 iterations, the
threshold is ¯xed at 1. Experimental results in
Figs. 5–7 illustrate that dyadic thresholds can
quickly and accurately correct outlier points.
Figure 5 shows the existence of outlier points before
smoothing.

Figure 6 shows the processed result for Fig. 5
after ¯ve iterations using a dynamic threshold. It
can be seen that the outlier points approach correct
points. Figure 7 shows the ¯nal smoothed result
after 20 iterations.

Some retinal layers may have large curvature in
SD-OCT images, such as fovea region. To correct
for curvature, we °atten the images to enhance their
adaptation for the segmentation algorithm. In this
process, the image below the RPE-Choroid bound-
ary is ignored. Figure 8 demonstrates retinal

°attening, where Fig. 8(b) is the °attened version of
the original image, Fig. 8(a).

3.2. Vitreous–ILM boundary surface

segmentation

Vitreous–ILM boundary surface detection is pro-
cessed on the °attened volume data of the original
volume data V by ignoring the pixels below the
RPE-Choroid boundary surface. For a low noise
retinal OCT image where only background noise
exists above the ILM, similar to the RPE-Choroid
boundary surface detection, the BRLBSS algorithm
in Sec. 2 can be used to obtain an accurate seg-
mentation result. However, because the Vitreous–
ILM boundary may have a large curvature in the
fovea region, the choice of the related parameters
should be considered carefully. For example,

Fig. 5. Great outlier points exist before smoothness.

Fig. 6. The processed result of Fig. 5 after ¯ve iterations by
using dynamic threshold.

Fig. 7. The ¯nal smoothed result after 20 iterations.

(a)

(b)

Fig. 8. Image °attening. (a) The original retinal SD-OCT
image. (b) The °attened image without the region below the
RPE-Choroid boundary.

3D automatic segmentation method for retinal OCT data
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relatively narrow 3D ¯lters in the x direction
(Fig. 2) should be used for the fovea region.

Vitreous–ILM boundary surface segmenta-
tion (VI BSS) algorithm:

Step 1: Denoising

For the °attened volume data V 0, a 3D average
¯lter with window size 6� 6� 6 is used to produce
a volume data denotedM . Then, a threshold ¯lter is
applied to M . In our experiment, the threshold
value was 30. This ¯lter procedure was iterated
several times to obtain a smoothed volume data, S.

Step 2: Extract boundary points

(1) Enhance the boundary with gradient information

A di®erential ¯lter in the z direction is applied to
the volume data S using a cuboid with a size of
1� 1� 11. The new volume data is denoted by D.

(2) Extract discrete boundary points

In every A-Scan of the volume dataD, the ¯rst peak
point is determined by moving from up to down.
These points constitute the preliminary Vitreous–
ILM boundary surface.

Step 3: Correct error points

This step is similar to the RPE-Choroid boundary
surface smoothness scheme. The main di®erence is
the smaller size of the weighted matrices that are
used to adapt the large curvature features of ILM
layer in the fovea region. The weighted matrices are:

W1 ¼ 1

64

0 1 2 1 0
1 4 8 4 1
2 8 �64 8 2
1 4 8 4 1
0 1 2 1 0

2
66664

3
77775
;

W2 ¼ 1

64

0 1 2 1 0
1 4 8 4 1
2 8 0 8 2
1 4 8 4 1
0 1 2 1 0

2
66664

3
77775
:

In the last ¯ve iterations, the size of weighted ma-
trices is reduced further. They are:

W1 ¼
1

12

1 2 1
2 �12 2
1 2 2

2
4

3
5; W2 ¼

1

12

1 2 1
2 0 2
1 2 2

2
4

3
5:

The VI BSS algorithm is e®ective for OCT images
with vessel shadows and/or a fovea region.

However, it may fail for clinical OCT images with
signi¯cant noise above the ILM (Fig. 9). To adapt
this case, an improved algorithm is proposed.

Vitreous–ILM preliminary boundary surface
segmentation (VI PBSS) algorithm:

Step 1: Denoising
Gray-scale morphological corrosion with a ball
structure of radius r is performed on the smoothed
volume data S obtained from the VI BSS algo-
rithm. Then, the average and threshold ¯lter pro-
cessing is repeated, as done in Step 1 of the VI BSS
algorithm. We denote the denoised volume data
with SE. In our implementation, r ¼ 5 was used.
Figure 10 illustrated the denoising e®ect.

Step 2: Extract the preliminary boundary points
(1) Enhance the boundary with gradient
information.

A di®erential ¯lter in the z direction is applied to
the volume data SE using a cuboid with a size of
1x1x11. The new volume data is denoted by D.

(2) Extract discrete boundary points

In every A-Scan of the volume data D, determine
the ¯rst peak point moving from up to down. To
compensate for the excessive erosion, dr=2e pixels
are subtracted from the depth coordinate, and these
points constitute the preliminary Vitreous–ILM
boundary surface points.

The VI PBSS algorithm works well for OCT
images with considerable noise above the ILM, but
it may fail for clinical OCT images with prominent
vessels (Fig. 11) due to excessive erosion.

Next, we merge the boundary points obtained
from the VI BSS and VI PBSS algorithms to obtain
the ¯nal segmentation result. The basic strategy is
to replace the discontinuous boundary points
obtained from the VI PBSS algorithm with the
corresponding boundary points obtained from the
VI BSS algorithm.

Fig. 9. Incorrect segmentation because of serious noise above
ILM.

Y. Sun et al.
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Let A and B be the boundary depth matrices
obtained from the VI PBSS and VI BSS algo-
rithms, respectively. Matrix C is the average ¯lter
result with a window size of n� n on the boundary
depth matrix A. In our implementation, n ¼ 11 was
used. Matrix E is the merged boundary depth ma-
trix. If jaij � cijj < jbij � cijj, then eij ¼ aij; other-
wise eij ¼ bij. Finally, the depth matrix E is further
smoothed according to step 3 used in the VI BSS
algorithm to obtain the Vitreous–ILM boundary

surface segmentation result. Figure 12 shows the
segmentation results with the improved algorithm.

3.3. ONL-IS/OS boundary surface
segmentation

ONL-IS/OS boundary surface segmentation can be
done with the °attened volume data V in between
the RPE-Choroid and Vitreous–ILM boundary
surfaces, where pixel intensities are set to 0 below
the RPE-Choroid boundary and to 255 above the
Vitreous–ILM boundary. We apply the 3D di®er-
ential ¯lter in Eq. (2) with a size of 3� 3� 11 on
the °attened volume data to obtain new volume
data, D. In Eq. (3), w1 ¼ k and w2 ¼ 0 are used to
obtain an enhanced volume data, I. In every
A-scan of data I, the point with the largest pixel
value is taken as the preliminary location of the
desired boundary. In principle, the ONL-IS/OS
boundary surface can be obtained from step 3 in
the BRLBSS algorithm. However, this algorithm
may not work well for some OCT images with dark
spots in the fovea region and near RPE, as shown
in Fig. 13.

(a)

(b)

Fig. 10. Denoising e®ect using VI BSS algorithm. (a) Original
image. (b) the denoised image using Gray-scale morphological
corrosion.

Fig. 11. Incorrect segmentation results because of excessive
erosion in a vessel or shadow region.

(a)

(b)

Fig. 12. Segmentation results with the improved algorithm.
(a) Image with considerable noise. (b) Image with a large
shadow.

Fig. 13. Incorrect segmentation result in the fovea region and
near the RPE because of dark spots.

3D automatic segmentation method for retinal OCT data
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To adapt our algorithm to this case, another error
correction procedure can be added before step 3 in
the BRLBSS algorithm. Because the IS/OS layer is
relatively °at, a third order polynomial can be ap-
plied to rule out some of the error points. This
procedure works as follows:

(1) For the preliminary boundary points of each
B-scan in I, polynomial least squares estimates is
performed to obtain a ¯tted polynomial

z ¼ a0 þ a1xþ a2x
2 þ a3x

3:

(2) The depth value of every boundary point is
substituted into the above expression to obtain a
polynomial ¯tted value. If the depth value is outside
of the con¯dence interval for the estimated value
associated with a probability of 0.98, the boundary
point is considered to be a noise point and is elim-
inated. The remaining credible boundary points are
used to repeat the polynomial least squares estimate
and obtain another ¯tted polynomial

z1 ¼ a4 þ a5xþ a6x
2 þ a7x

3:

(3) The x coordinate of every noise point is
substituted into the polynomial z1, and the poly-
nomial ¯tted value is taken as a depth estimate for
the noise boundary point.

With the last obtained preliminary ONL-IS/OS
boundary points, the error points are corrected
using the same algorithm that is used for the RPE-
Choroid smoothing.

The ONL-IS/OS boundary surface can be seg-
mented correctly by using a polynomial ¯tting to
eliminate the error points (Fig. 14).

3.4. OPL-ONL, NFL-GCL, IPL-INL,

INL-OPL boundary surface
segmentations

To segment the OPL-ONL boundary surface, we
further shrink the search space in between the

ONL-IS/OS and Vitreous–ILM layer boundaries.
The basic steps are similar to the steps used in the
ONL-IS/OS boundary segmentation. The di®er-
ences are as follows:

(1) The OPL-ONL boundary does not appear dark
spots like the ONL-IS/OS boundary, and it may
have a large curvature when the fovea region
lies in the image. As a result, the step using a
third-order polynomial to eliminate some error
points is not used here.

(2) The 3D di®erential ¯lter in Eq. (1) with size of
7� 15� 15 on the °attened volume data is
used.

The other boundary detection algorithms for the
NFL-GCL, IPL-INL, and INL-OPL are similar to
that used for OPL-ONL boundary detection. When
the Vitreous–ILM, ONL-IS/OS, OPL-ONL, NFL-
GCL, IPL-INL, and INL-OPL segmentations are all
completed with the °attened volume data, an in-
verse translation on the segmented layers is per-
formed according to the RPE-Choroid boundary to
obtain the boundaries based on the original volume
data V .

4. Experimental Results and Analysis

To determine the segmentation accuracy of our
algorithms for SD-OCT volume data, we performed
segmentation on eight OCT volume datasets ac-
quired from a commercial Spectralis OCT device,
using Matlab R2012b (The Mathworks, Inc.,
Natick, MA, USA). In each volume of data, the
number of pixels are 512 in the x direction, 97 in
the y direction and 496 in the z direction. The pixel
spacing in the x direction is 11.55�m, in the y di-
rection 61.51�m and 3.87�m in the z direction.
The data is saved in AVI video format, and the
OCT B-Scan images were ¯rst extracted from the
AVI ¯le.

Figure 15 shows two images and Vitreous–ILM
boundary segmentation results before/after denois-
ing, with the left images in Fig. 15(a), Fig. 15(c) as
the segmentation results before denoising, the right
images in Fig. 15(b), Fig. 15(d) as the segmentation
results after denoising with Gray-scale morpholog-
ical corrosion. We can see from Fig. 15 that the
proposed method is robust to noise.

Figure 16 displays OCT volume datasets
obtained by using a 3D smoothing ¯lter, a 3D dif-
ferential ¯lter and RPE-Choroid boundary surface

Fig. 14. ONL-IS/OS boundary surface segmentation result
obtained by using polynomial ¯tting to eliminate the error
points.

Y. Sun et al.

1650008-10

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



enhancement, with Fig. 16(a) as the original
image; Fig. 16(b) as the result of 3D smoothing
¯lter; Fig. 16(c) as the result of 3D di®erential ¯lter;
Fig. 16(d) as the result of adding Fig. 16(b) and
Fig. 16(c) together without depth enhancement;
Fig. 16(e) as the result of adding Fig. 16(b) and

Fig. 16(c) together with z-depth enhancement
where the pixel intensity values in the upper part of
the RPE-Choroid boundary are weakened so that
the RPE-Choroid boundary is enhanced.

Figure 17 illustrates segmentation of seven layer
surface boundaries with prominent vessel shadows.

(a) (b)

(c) (d)

Fig. 15. Vitreous–ILM boundary segmentation results. (a), (c) before denoising. (b), (d) after denoising with Gray-scale
morphological corrosion.

(a) (b) (c)

Fig. 16. OCT volume datasets obtained by using a 3D smoothing ¯lter, a 3D di®erential ¯lter and RPE-Choroid boundary surface
enhancement. (a) the original image. (b) the result of 3D smoothing ¯lter. (c) the result of 3D di®erential ¯lter. (d) the result of
adding (b) and (c) together without depth enhancement. (e) the result of adding (b) and (c) together with z-depth enhancement.

3D automatic segmentation method for retinal OCT data
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To validate the performance of the proposed
method, two manual segmentations and the auto-
matic segmentation made by our algorithm are
done and their experimental results are compared.
We manually delineated an image frame using the
internally developed matlab GUI. We choose ten
frames randomly from each OCT volume datasets,

and delineated seven boundaries manually on each
frame. The manual delineations were performed by
clicking on approximately 20–50 points along
each layer border followed by interpolation between
the points using a cubic B-spline. Segmentation
results of some frames are illustrated in Fig. 18,
where the manually delineated boundary and the

(d) (e)

Fig. 16. (Continued)

Fig. 17. Segmentation of seven layer surface boundaries with prominent vessel shadows.

Fig. 18. Segmentation results of some frames.

Y. Sun et al.
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automatically segmented boundary are plotted in
the red line and green line respectively. When one
color covers the other, this means our algorithm ¯ts
well with the manual method at that position. The
pictures show that our algorithm is quite accurate
no matter whether an image has a fovea or an
incline.

The absolute and signed errors for each boundary
and their averages are calculated. Table 1 shows
that the average absolute error compared to the
average manual delineation is 2.85�m. To further

examine our algorithm, we calculated the thickness
of the OCT layers from manual delineated data and
auto-segmentation data. The experimental results
are given in Table 2. The results listed in Tables 1
and 2 are very similar in essential, which shows that
our methods are rather practical for substituting
the manual segmentation method.

In order to ensure the accuracy of the proposed
segmentation method, we further used OCTSeg to
process our dataset, and we compared the results
with our manual segmentation results numerically.
OCTSeg Software is open for segmenting and vi-
sualizing OCT data, which supported Heidelberg
Engineering Spectralis RAW data ¯les, Images and
image lists, including .vol, .oct, .list, .pgm, .tif, and .
jpg format. OCTSeg Software is available at
http://www5.cs.fau.de/our-team/mayer-markus/
automated-retinal-layer-segmentation/. It can seg-
ment six prominent boundaries, including RPE-
Choroid, Vitreous–ILM, IPL-INL, OPL-ONL,
ONL-IS/OS and NFL-GCL. Our test data is also
from Heidelberg Engineering Spectralis, and the
proposed algorithm can segment seven prominent

Table 1. Mean absolute error and signed errors (and standard deviations) in micron.

Auto vs Exp. 1 Auto vs Exp. 2 Auto vs avg. Exp

Boundary Absolute Signed Absolute Signed Absolute Signed

Vitreous–ILM 4.12 (3.32) 2.47 (4.24) 2.93 (2.72) �0.50 (3.91) 2.75 (2.56) 0.97 (3.42)
NFL-IPL 4.90 (5.03) �1.12 (6.47) 3.21 (2.57) �1.17 (3.83) 3.26 (3.02) �1.15 (4.04)
IPL-INL 4.69 (4.40) �0.39 (5.74) 3.05 (2.33) �0.68 (3.62) 3.09 (2.70) �0.58 (3.76)
INL-OPL 5.07 (4.35) �3.19 (5.46) 3.04 (2.27) �1.59 (3.35) 3.47 (2.77) �2.38 (3.53)
OPL-ONL 4.06 (3.27) �1.04 (4.45) 2.95 (2.19) �1.11 (3.35) 2.84 (2.17) �1.08 (3.08)
ONL-IS/OS 2.93 (2.13) 1.08 (3.06) 2.74 (2.04) �0.20 (3.22) 2.24 (1.67) 0.46 (2.55)
RPE-Choroid 3.30 (2.43) 0.09 (3.54) 2.95 (2.15) �1.39 (3.21) 2.34 (1.71) �0.69 (2.59)

Overall 4.15 (3.56) �0.30 (4.71) 2.98 (2.32) �0.95 (3.50) 2.85 (2.37) �0.64 (3.28)

Table 2. Avg. manual thickness and auto-segment
thickness in micron.

Layers
Manual

thickness (�m)
Auto-segment
thickness (�m)

Absolute
error (�m)

NFL 47.23 41.20 6.03
GCL 63.84 65.05 1.21
INL 28.09 26.58 1.51
OPL 30.05 31.00 0.95
ONL 67.50 68.96 1.47
RPE 64.81 60.97 3.85

Table 3. OCTSeg mean absolute error and signed errors (and standard deviations) in micron.

Auto vs Exp. 1 Auto vs Exp. 2 Auto vs avg. Exp

Boundary Absolute Signed Absolute Signed Absolute Signed

Vitreous–ILM 4.21 (5.77) 1.28 (6.98) 5.30 (6.13) 4.25 (6.98) 4.03 (5.58) 2.74 (6.41)
NFL-IPL 16.41 (16.48) 11.00 (18.82) 16.21 (15.53) 11.20 (17.60) 15.81 (15.71) 11.05 (17.71)
IPL-INL 9.39 (8.89) 5.66 (10.64) 8.96 (7.81) 6.01 (9.24) 8.55 (7.84) 5.82 (9.24)
INL-OPL 31.20 (8.19) 30.97 (8.37) 29.89 (8.18) 29.65 (8.42) 30.60 (7.49) 30.41 (7.71)
OPL-ONL 6.88 (5.59) 0.43 (7.28) 6.63 (5.72) 0.42 (7.32) 6.28 (5.34) 0.37 (6.74)
ONL-IS/OS 6.32 (4.70) �3.95 (5.87) 6.19 (4.56) �2.63 (5.55) 5.72 (4.27) �3.28 (5.20)
RPE-Choroid 3.21 (2.44) 0.18 (3.62) 4.00 (2.82) 1.65 (3.82) 2.99 (2.23) 0.94 (3.02)

Overall 11.09 (7.43) 6.51 (8.80) 11.03 (7.25) 7.22 (8.42) 10.57 (6.92) 6.86 (8.00)

3D automatic segmentation method for retinal OCT data
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boundaries, including RPE-Choroid, Vitreous–ILM,
IPL-INL, INL-OPL, OPL-ONL, ONL-IS/OS and
NFL-GCL. Compared with OCTSeg, our algorithm
can segment more one boundary OPL-ONL than
OCTSEg does. OCTSeg can segment our dataset
e®ectively as a whole, so we compare our method
with OCTSeg using our datasets. The absolute
error and signed error is shown in Table 3.

From Tables 1 and 3, we can see that our algo-
rithm works better at every boundary. The OCTSeg
fails to segment NFL-IPL and INL-OPL correctly
but works well on Vitreous–ILM and RPE-Choroid.
However, our algorithm outperforms OCTSeg
greatly in all these boundaries.

Fig. 19. Comparison with OCTSeg. Our results (¯rst row) and OCTSeg results (the second row).

Table 4. Mean absolute error and signed errors for odd and
even B-Scan groups in micron.

Auto vs avg. Exp
Di®erence

Boundary Odd Even Odd – Even

Vitreous–ILM 2.71 (2.10) 2.80 (2.76) �0.09 (�0.66)
NFL-IPL 2.98 (2.69) 3.43 (3.11) �0.45 (�0.42)
IPL-INL 2.87 (2.52) 3.13 (2.64) �0.25 (�0.12)
INL-OPL 3.36 (2.60) 3.56 (2.69) �0.19 (�0.09)
OPL-ONL 2.47 (1.95) 3.07 (2.38) �0.59 (�0.43)
ONL-IS/OS 2.29 (1.67) 2.25 (1.71) 0.04 (�0.04)
RPE-Choroid 2.16 (1.63) 2.54 (1.84) �0.37 (�0.21)

Overall 2.70 (2.17) 2.97 (2.45) �0.27 (�0.28)
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Fig. 20. Mean Absolute error of eight di®erent OCT data objects.
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Some experimental results are shown in Fig. 19,
with the images in the ¯rst row as the segmental
results by our algorithm, and the images in the
second row as the ones by OCTSeg. It can be seen
from Fig. 19 that our segmental results is better
than OCTSeg's visually. In addition, NFL-GCL
boundary segmented by OCTSeg is very not accu-
rate, and our method is more robust to images with
shadow.

To show that our algorithm is reproducible, we
separate the B-Scans into two groups according to
its group number's parity. And calculated the ab-
solute error and signed error of the two groups
comparing to the average manual segmentation. See
Table 4.

From Table 4, we can see that the absolute error
di®erence between the odd group and even group is
very small.

To further examine the stability of our algo-
rithm, we calculated the absolute error for each
OCT objects, and Fig. 20 shows that the overall
absolute error is quite stable in these eight OCT
objects which shows that our algorithm works well
and stable in di®erent datasets.

Figure 21 presents some experimental results for
various cases. It can be seen that our automatic
algorithm correctly segmented seven retinal layer
boundary surfaces for retinal OCT images with

large curvature, severe noise above the ILM, fovea,
prominent vessels, or large shadows because of dis-
eases. The average computation time was 3.5 s per
frame (Intel Core I7 CPU at 3.0GHz, and 8GB
RAM), and the program can be optimized to reduce
the time further. Therefore, our algorithm is simple
and fast.

Once the retinal layer segmentations have been
performed successfully, every layer boundary sur-
face can be visualized, and a thickness map between
any two boundaries can be generated, which can be

Fig. 21. Some experimental results from various imaging cases.

Fig. 22. Visualization of the Vitreous–ILM and RPE-Choroid
boundary surfaces.

3D automatic segmentation method for retinal OCT data
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useful for disease diagnosis. An example visualiza-
tion of the Vitreous–ILM and RPE-Choroid
boundary surfaces is shown in Fig. 22, and the
whole retinal thickness map determined from them
is shown in Fig. 23.

As is the case for most of the current OCT image
segmentation algorithms, our algorithm processes
healthy or slightly abnormal retinal OCT images
well but fails to accurately process retinal OCT
images with serious diseases (Fig. 24).

5. Conclusions

We proposed a novel 3D segmentation method for
retinal OCT volume data that uses pixel intensity,
boundary position information, and intensity
changes on both sides of the layer borders simulta-
neously. The method designs a speci¯c 3D di®er-
ential operator for the processing boundary to

enhance the border, it conducts a 3D smoothing
procedure to denoise the volume data, and it further
utilizes the boundary position to produce an en-
hanced boundary volume data that serves as a
better indicator for identifying the desired bound-
aries. Our method can segment seven prominent
boundary surfaces, and it is automatic, e±cient and
practical. It should be pointed out that the men-
tioned strategy in our method should be applicable
for other boundary surfaces, which would be our
future work to do.
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